

Outline

- The Present
 - PFAS Policy and Roadmap
- The Past
 - Historic & Current Uses at DOE
 - Challenges and Analogues
- The Future
 - Role of National Labs and R&D

DOE Actions: Timeline

September 2019

DOE PFAS Work Group established

September 2019

Operating Experience Level 3 Document PFAS Awareness, published

March 2020

Emerging Contaminants in Groundwater at Brookhaven National Laboratory, published

September 2021

Deputy Secretary memorandum addressing PFAS at DOE

August 2022

PFAS Roadmap released

August 2022

DOE PFAS Website went live

December 2021

DOE Guidance on Reporting PFAS-Containing AFFF Releases or Spills to the Environment issued

November 2021

PFAS Coordinating Committee (PCC) established

November 2022

Initial Assessment Report released

December 2022

R&D Report published

January 2023

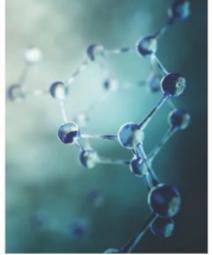
Historical/Current Use Records Search issued

August 2023

Environmental Sampling Guidance issued

PFAS Coordinating Committee Actions: DOE PFAS Roadmap

The *PFAS Strategic Roadmap: DOE Commitments to Action 2022-2025* was published on August 18, 2022.


PFAS Strategic Roadmap:

DOE Actions: DOE PFAS Roadmap

UNDERSTAND

MANAGE & PROTECT

ADVANCE SOLUTIONS

COMMUNICATE & COLLABORATE

GOAL:

Develop information concerning PFAS uses and environmental releases to characterize and assess the Department's potential liabilities and risks

OBJECTIVES

ACTIONS

GOAL:

Safeguard the health and well-being of ou employees, the public, and the environment by minimizing exposure to PFAS and addressing PFAS releases

OBJECTIVES

ACTIONS

GOAL:

Leverage expertise at DOE's National Laboratories and collaborate with research partners to enhance PFAS knowledge and develop technological solutions

OBJECTIVES

ACTIONS

GOAL:

Engage with
regulators, tribal
nations, local
communities, and
stakeholders to
ensure transparency
on DOE's PFAS
progress and develop
effective PFAS
strategies

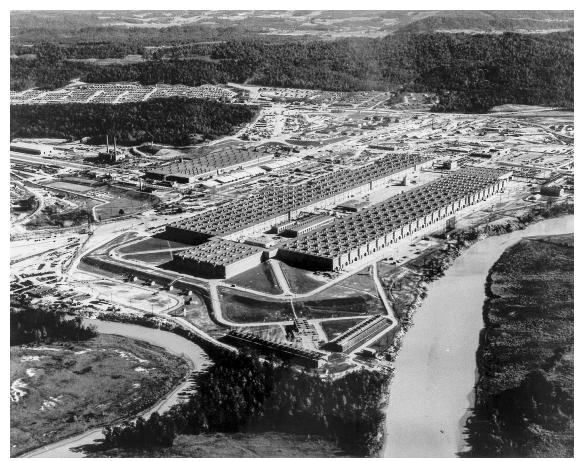
OBJECTIVES

ACTIONS

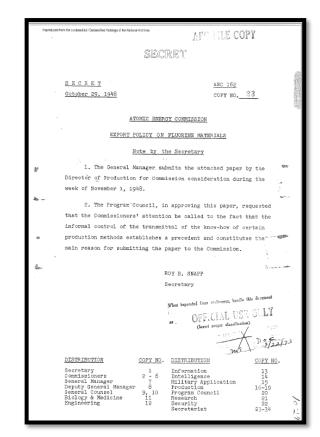
Actions

DOE Actions: Historical and Current Use Guide

The *Guide for Investigating Historical and Current Uses of PFAS at DOE Sites* was published on February 16, 2023.


Guide for Investigating Historical and Current Uses of Per- and Polyfluoroalkyl Substances at Department of Energy Sites

DOE's unique historic role with PFAS


PFAS were first produced on an industrial scale for use in uranium separation activities during the Manhattan Project.

- 1938 Teflon® (polytetrafluoroethylene,
 PTFE) discovered by DuPont scientists
- Enrichment of U235 for a-bomb project used gaseous UF6 (highly corrosive).
- Teflon® and other liquid fluorocarbons found to be highly resistant to corrosion
- First (classified) industrial use of PFASidentified through historical record review in March 2020.
- Fluorocarbon chemistry declassified after the war, begins commercial use in 1949

Example from Unclassified NARA Records: Export Policy on Fluorine Materials

- "About 2,000 tons of fluorocarbons were produced by the Manhattan District."
- "Nearly all the project fluorocarbons and the required fluorine for their production was prepared in Manhattan District plants...operated by DuPont and Hooker Electrochemical."
- Many companies were already seeking peacetime applications for fluorocarbons
- Report included annual estimated volumes used

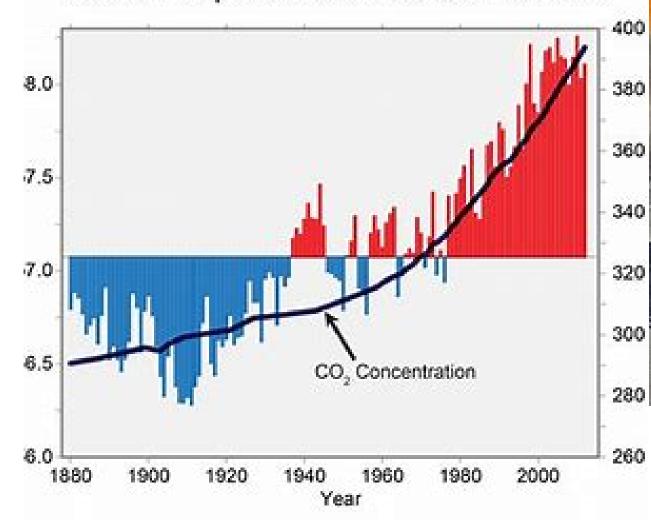
Office of the Secretary General Correspondence, "AEC Export Policy on Fluorene Materials," 1948, NARA, A1E67-A1 NN3-326-93-007.

The Challenges of PFAS

- PFAS rapidly became invisibly ubiquitous
 - Used in dizzying array of products and applications
- Industries (and USG essential missions) rely on PFAS
 - The properties that make them useful also make them challenging
- Knowledge of health impacts continues to grow
 - Challenge of regulating at PPT/PPQ levels

What are right historic analogues and mental models to help us understand PFAS?

A LINE OF THE PARTY OF THE PART


DDT

HCFCs

Lead

Climate Change

Global Temperature and Carbon Dioxide

The Future: What do we need from R&D?

Detect, Measure, Monitor Identify more types of PFAS in more types of media with greater precision at lower cost to track pathways and mobility

Destroy

Break the carbon-fluorine bond at scale, affordably, without emitting toxins or greenhouse gases

Replace

Identify low-risk materials with properties that have potential to support key applications

Communicate & Collaborate

We cannot do this alone

